

FUNDAMENTALS OF

PROGRAMMING
And Administrative Scripting

Glenn A. Barnas
gbarnas@yahoo.com

Abstract
Learn the basics of programming and apply them to create automation for common

system-administration and management tasks.

Contents
Fundamentals of Programming ... 2

Introduction ... 2

Practice .. 2

Variables ... 3

Types of Variables .. 3

Assignment ... 3

Variables and Scope .. 4

Conversion .. 4

Identifiers .. 4

Input & Output .. 5

Getting User Input... 5

Displaying Output ... 6

Conditionals .. 7

If – Else ... 7

Immediate If .. 7

Compound Conditionals with AND or OR ... 7

Loops... 8

Iterative Loops – For & For Each ... 8

Conditional Loops – Do and While .. 8

Branching & Functions ... 9

Advanced Concepts .. 10

String Manipulation .. 10

Multiple Conditional ... 10

Special Definition of Variables ... 11

Manipulation of Data Files ... 11

Special Variables & “Built-Ins” .. 12

KiXtart-Specific Statements & Functions .. 13

Using Variables ... 13

Expressions ... 13

Input & Output .. 14

Conditionals .. 14

Iterative Loops .. 15

Conditional Loops ... 15

Fundamentals of Programming

Introduction

Before attempting to learn any specific programming language, some fundamental

concepts common to all languages should be understood. The specific examples in this

document may be taken from Perl, Visual Basic, or KiXtart, but will be typical of most

programming languages.

Before undertaking any programming project, it is a good idea to think about the process

as a whole. Try to break the process into major parts, think about what information you

will need to process, how it will get into the program, and what will be done to it as an

end-result. Programmers often add notes to their initial document using words or phrases

that resemble the programming language. This is known as “pseudo-code” and will help

them identify the logic process.

Another useful tool is “flow-charting”. This is a diagram of the entire process, using

simple descriptions of major functions and decision points. Additional flowcharts can be

used to evaluate and describe the major functions in more detail.

Learning this document & diagram process early is important, as it makes it easier to

tackle more involved projects later.

Besides the overall approach that you establish to your project, there are a number of

concepts that are common to all languages. It is important to have a firm understanding of

them before learning a specific language.

Practice

Write a procedure and draw a flowchart that describes the process for building your

favorite sandwich. Use the example Peanut Butter & Jelly process for reference. Some

pseudo-code has been used.

1. Gather ingredients (bread, peanut butter, jelly, plate, knife)

Define Slice[2], PB, Jelly, Plate, Knife, NoCrust, Divide # Sandwich variable names

2. Place bread on plate, heel to heel

Mount(Slice[1],Left,Plate); Mount(Slice[2],Right,Plate)

3. Spread slice #1 with Peanut Butter

fnSpread(Slice[1],PB) # covers slice evenly with ingredient

4. Spread slice #2 with Jelly

fnSpread(Slice[2],Jelly) # covers slice evenly with ingredient

5. Flip Slice #1 onto Slice #2 to make a sandwich

Sandwich = fnCombine(Slice[1],Slice[2])

6. If defined, trim crust and discard

If NoCrust <> 0 Trim(Sandwich)

7. If defined, cut assembled sandwich in half at 45-degree angle

If Divide <> 0 Cut(Sandwich, 50%, 45)

8. Enjoy!

Satisfaction = Eat(Sandwich)

Variables

Every programming language uses some form of variables. These are symbolic,

meaningful names that refer to some piece of information within the program. Generally,

variable names can be any combination of letters or numbers, although certain languages

may impose restrictions on their names, such as:

• Must begin with a letter

• Must be less than 14 characters in length

• Must not include special characters (such as :, *, #, %, spaces, or tabs)

These restrictions, while specific to certain languages, make sense in general and should

probably be followed as “rules of common sense”.

Types of Variables

Variables can hold different kinds of information – text, numbers, and Boolean

(true/false). The language keeps track of the type of information stored in a variable so it

knows how to manipulate the information. For example, if the variables “X” and “Y”

contained the text “Foot” and “ball”, the statement

Result = X + Y

would store “Football” in the new variable called Result. The “+” would be interpreted as

“concatenation” instead of “addition”. If the variables instead contained numeric values,

the variable Result would contain the sum of those two values.

Text variables are referred to as “strings”, because they contain strings of characters.

Some languages have a generic variable (called a “variant”) that can hold anything. These

might need to be “cast” (forced to a particular type) when they are referenced in order to

be properly evaluated.

Numeric variables can be further divided into the type of number they contain. Integer

and Real (floating decimal) are two common types. Integers are used for counters and

indexes, and can often represent large numbers in a small amount of storage. Real

variables provide a high degree of accuracy, but consume more storage and result in

higher overhead.

Another class of variable is an array. This can be thought of as a matrix of variables,

usually all of the same type. An example of an array might be the “OSInfo” array, in

which one element identifies the OS Type, another identifies the version, and so on, until

all unique values of a computer’s operating system are represented in a single named

element.

Assignment

Variables are “assigned” values by placing them on the left side of an equal sign (“=”).

The right side is the source, and can be a fixed number or string, the value returned from

a function, or even another variable. A common (but strange looking) assignment occurs

when the same variable appears on both sides of the assignment. The right side is always

evaluated first, so “X = X + 1” adds 1 to the current value of “X”, then stores the new

result in “X”, effectively incrementing the value of “X” by 1. The assignment of a value

may define the variable type. For example, ‘X = 3’ assigns the value of three, while ‘X =

“3”’ (note that the number is in quotes) assigns the character string “3” to the variable.

Variables and Scope

Scope refers to the “visibility” of a variable. As programs get more complex, they tend to

be made of several individual functions. The main part of the program can invoke the

functions to perform certain tasks. Functions are often used when the same task must be

performed at several points within the program.

Variables can be defined in such a way that they can be referenced in the main program

and in all functions. These are known as global variables. They can be defined in the

main program, evaluated and modified in any function, and the new value will be

available to the main program and in all other functions. These are useful, but can also be

dangerous, since careless use of global variables can make for difficult troubleshooting.

The opposite of a global variable is one defined with local scope. When defined in this

manner, the variable “X” in the main program could contain “6”, while “X” defined in a

function might contain “yes”. Neither can view (or affect) the other because their scope

is local to their definition.

Often, variables must be declared before use. In some languages, you define the name

and type of data it will hold, as in “INT X, Y”. This defines a local variable that will hold

integer numbers. Other languages may use the generic variant class until the first value is

actually assigned to the variable.

Conversion

Sometimes a variable will not contain the data in the format you need. As described

earlier, the definition ‘X = “3”’ results in a string variable type. If we then performed ‘X

= X + 4’, the result would be “34”and not 7, because the variable was treated as a string,

forcing the “+” to be interpreted as a string concatenation instead of mathematical

addition.

Several functions exist that force the conversion of a value to a specific type. While each

is language specific, the most common syntax is illustrated here:

• Cint(var) Converts var to integer number

• Cdbl(var) Converts var to double-precision real number

• Cstr(var) Converts var to string

You will need to consult your specific language reference manual to learn which

conversion functions exist. What is important to understand now is that variables are

“typed” by the language, and conversion may be needed before you can perform

operations on the variable!

Identifiers

Some languages allow any word (not already reserved by the language itself) to be used

as a variable. Others identify variables by preceding the variable name with an identifier

character, such as a “$”. Some use a balancing act, using the plain name for assignment

and the identified name when referencing the contents of the variable. Consult your

language reference manual for specific rules.

Input & Output

Programs would not have much value if they did not accept input and deliver output. All

programs have both input and output. (consider the DOS dir command – what is it’s

“input”?)

Most of us think of input as something the user types in response to program queries.

While this is very common, other forms of input can be files, other programs, and the file

system itself. Output is usually the console screen, but can be a file, printer, or other

attached device. Console input and output are so common, however, that an entire

programming concept known as stdio (STanDard Input & Output) is dedicated to it. The

console keyboard is sometimes referred to as the stdin device, while the console screen is

known as stdout. These references can be redirected from the command line (or in other

scripts) to get input from and save output to a file by using the redirection operators “<”

and “>”. These are not programming objects themselves, but knowing that they exist (and

understanding how they work) allow you to take advantage of their capabilities when

writing your own programs. Another important stdio concept is the “standard error”

device, called stderr. Error messages are written to the console screen though the stderr

device so that normal program output may be redirected to an output file or another

program, but error messages will still appear on the screen.

Getting User Input

All languages have the ability to read the stdin device. Remember that unless the operator

has redirected the input to come from a file or other program, the input must be typed at

the console.

Languages have a myriad of commands for reading input, and while the command syntax

may be different, the basic concepts remain the same.

• Numbers All input commands will return a “number” if the input is

restricted to digits, commas, and a period. Most input

commands will work this way.

• Text Strings Typical commands are input, gets, lineinput, read. All continue

to read input until a line terminator character is typed. This is

usually the enter or return key on a keyboard.

• Single Characters Commands might include getc, get, inkey or readc. These

commands are useful when asking simple Y/N questions or

accepting menu choices. The command returns the first

character typed on the keyboard.

Note that many computer systems buffer the input, allowing the user to type information

even when a program is not requesting input. The input commands actually read from the

buffer and not the keyboard itself. Some languages provide commands to flush (clear) the

keyboard buffer, forcing the user to enter a response only when the program is ready.

Displaying Output

Most output functions will send their data to the stdout device, usually the console screen.

Some languages that operate in a GUI environment have enhanced capabilities to

generate output in pop-up windows (dialog boxes) in addition to the text console.

Again, the actual commands are language specific, but might be print, write, or output.

Sometimes, commands exist to help format the output, such as a cls command to clear the

screen, at or pos commands to place the cursor on the screen, or even commands to

control the size or color of the text.

• Messages In nearly all languages, simple text messages must be enclosed

in quotes. print “this is my first output” is an example of how

quotes delimit the message that is to be displayed.

• Variables Sending the contents of a variable to your output destination

can sometimes be confusing, especially when the language

does not require an Identifier character to precede the variable

name. A simple rule that works in all languages is to enclose

any text in quotes, and use string concatenation to output the

variable data. For example:

print “The value of X is “ + X

• Dialog Boxes This capability will depend on the language, and whether the

language is expected to operate in a GUI environment. Perl, for

example, does not have this capability, but does have special

extensions that support it. Most other modern languages have

some form of dialog-box support built-in.

A typical dialog box will have a title, text message, and –

optionally – one or more response buttons. The response

buttons are often Yes/No, OK/Cancel, or similar combinations.

A value is usually returned from this function indicating which

button (if any) was selected.

Conditionals

Conditionals are commands that can make decisions and change how the program

operates. All conditional statements perform a test, and depending on whether the result

of the test is TRUE or FALSE, an appropriate action will occur.

The test part of the conditional usually compares two values. Most common comparisons

are equality (=), inequality (<>), less-than (<), or greater-than (>). Some languages offer

additional comparisons, and a few use slightly different syntax (like “= =” for equality, or

“!=” for inequality). No matter what the syntax is, the comparison results in a true or false

evaluation, and the corresponding actions are performed.

If – Else

The most common conditional is the if statement. The syntax is similar in nearly all

languages It starts with the If, followed by some type of test. Some languages require that

the test end with the word then, although this requirement is fading from use. Following

the If/Test line is the True Execution Block. This is a block of one or more lines of

program code that will be executed if the test is true.

If a different set of commands should be executed if the test is false, then an Else

statement will be used, and the lines that follow become the False Execution Block.

Some languages require that you define the beginning and end of these execution blocks,

often using braces (“{“ and “}”). Other languages require that the end of the If be

terminated with some sort of End If statement. These languages assume that anything

following the test is the True Execution Block, which is terminated by either the Else or

End If statement. If Else is found, the False Execution Block is defined between the Else

and End If commands.

Immediate If

Because the if statement is used so often to define a variable with one or another value,

the Immediate If (usually iif) has found its way into many languages. It can assign a value

to a variable based on the result of a test. It usually follows the form

X = iif(Var=10,50,0)

Thus, if var is equal to 10, X will be set to 50, otherwise X will be set to 10. This

eliminates the true and false execution blocks and all of the extra typing associated with

them. It also makes reading the code somewhat simpler.

Compound Conditionals with AND or OR

Sometimes, a simple test will just not be enough. Logical operators and and or permit

more complex tests to be defined. For example, the statement

If X = 10 or X = 20 And Y = 5

will be considered TRUE if X were equal to 10. It would also be TRUE if X were equal

to 20 and Y were equal to 5. Note that when X = 10, the first part of the test is TRUE, the

remaining part following the OR is not evaluated, as the statement is already TRUE!

Check your program language manual for additional logical operators that may be

supported.

Loops

Where conditionals can control which part of a program gets executed, loops control how

many times a block of code will be executed. There are different types of loops available

in most languages, to accommodate different situations. Most modern languages support

at least a variant of the loop formats discussed here.

Iterative Loops – For & For Each

An iterative loop performs a loop a finite number of times. These are often used to

process a well-defined number of elements, such as each of the arguments passed to a

program or function, or the number of elements in an array.

The most common iterative loop is the for / next loop. The usual syntax is something like

For X = 0 to 100 step 10

 statements…

Next

In this example, the loop counter “X” is initialized to zero. The statements in the loop are

executed, and are permitted to use (and often modify!) the value of X. When the next

statement is reached, the value of X is compared to the upper limit, defined here to be

100. If it is not equal to or greater than the upper limit, the step value is added to X and

the loop is repeated. The loop exits when the loop counter equals or exceeds the upper

limit. In this example, the value of X counts by tens, from 0 to 100.

A conditional may be placed within the loop statements to alter the loop counter. Often, a

loop should be executed a particular number of times, but if an exception occurs, the loop

can be exited by setting the counter equal to the upper limit. The loop will terminate

when the last statement is executed.

A common alternative to the for / next loop is the for each / next loop. Many newer

languages support this functionality, which allows each element in an array to be

evaluated without knowing how many elements exist. Assume that a function returns an

array containing the total of each sale made. There is no way to pre-determine how many

sales will be made, so a fixed for/next loop isn’t appropriate. The code below will

evaluate each item in the SALES array, assigning the next element value to the Sale

variable:

For Each Sale in SALES

 TOTAL = TOTAL + Sale

Next

This example builds a running total of the sales by adding the Sale value to the TOTAL

variable each time the loop is executed. The loop terminates automatically when the last

array element is referenced. Note that this format is not appropriate when the content of

the array itself must be modified.

Conditional Loops – Do and While

Conditional loops process while (or until) a particular condition is TRUE. A do loop

performs its test at the end of the code block. This causes the statements in the loop to

always be executed at least once. A while loop performs its test at the top of the loop. If

the test is immediately false, the statements in the loop will be bypassed, having never

been run. Both forms have value, but in greatly differing situations.

The syntax of conditional loops varies widely between languages – consult your manual

for exact syntax.

Branching & Functions

Branching allows control of the program to be diverted to another block of code. This

diversion can be permanent, as in the case of a goto, or temporary, as implemented by

gosub or functions.

• Goto

Immediately transfers control to a new location within the program. The new

location is defined by a label, or – in older languages – a line number. The use of

goto is discouraged, as it makes the program logic difficult to follow. It is still

useful, when diagnosing problems, as it can quickly allow processing to

temporarily bypass a section of code that may be in error.

• GoSub

Immediately transfers control to a defined subroutine. This is a block of code that

performs specific processing, then returns control to the statement that follows the

gosub. A subroutine generally starts with a label, contains one or more program

statements, then terminates with a return statement. Subroutines are often used

when a group of statements would otherwise be repeated at several locations

within the program. A subroutine is part of the main program, and has the same

variable scope. This allows variables to be referenced and manipulated directly.

Unfortunately, variables defined and used within the subroutine are also visible to

the main program, and can affect the operation of the program if careful

consideration is not given to the variable names used in subroutines!

• Functions

Functions are similar to subroutines in concept, but are totally separate from the

main program. Variables are passed to and returned from functions, which

provides isolation between the function and the main program. Only variables

explicitly declared as Global are shared between the main program and the

function.

Functions also have an additional advantage – they can be stored in an external

file and used in many programs, eliminating the need to re-write the statements

for commonly used tasks!

Most languages support functions, and most allow any number of values to be

passed to the function. The number of values that can be returned by a function

varies, but is usually limited to one. Consider returning an array if you need to

return more values. A function can usually return an exit code in addition to a

value. The exit code indicates that the function was successful, or that it

encountered an error. Generally, an exit code of zero indicates success, while any

other value would indicate some specific error had occurred.

Advanced Concepts

As programming languages evolved, special commands were added to simplify the

process of manipulating data. Depending on the programming language you have chosen,

there may be commands for reading system files (registry, logs, and configuration files)

or communicating with other programs (Windows COM).

The statements illustrated here are fairly common to modern languages in one form or

another.

String Manipulation

• Left Left(sVar, 5)

Returns the 5 left-most characters from sVar

• Right Right(sVar,5)

Returns the 5 right-most characters from sVar

• SubStr SubStr(sVar,5,2)

Returns 2 characters from sVar, starting at the 5th position

• InStr InStr(sVar, “happy”)

Returns the character position in sVar where the string “happy” was found.

Returns zero or an error if it wasn’t found.

• Trim / LTrim / RTrim Trim(sVar)

trim – returns sVar with leading and trailing spaces removed

ltrim – returns sVar with leading spaces removed

rtrim – returns sVar with trailing spaces removed

Multiple Conditional

• Case Statement

Sometimes, you want to perform different actions depending on the value of a

variable. You could do this with many If statements, but a case statement is much

easier to use, and better to troubleshoot. There are many formats to the case

statement, but the general logic is the same in all languages. In general, it looks

like this:

BeginCase

Case X > 10

 statements executed when X is more than 10…

Case X > 1

 statements executed when X is more than 1 (but 10 or less!)…

Case X = 1

 statements executed when X is exactly 1…

EndCase

The first case evaluates the value of X, and performs the statements if it is greater

than 10. The next statement block is executed if X > 1, and the third block

executes only if X equals 1. Most languages require the beginning and end of the

case block to be delimited in some fashion as illustrated with the BeginCase and

EndCase statements. Also, once a case statement evaluates to true, all remaining

tests are skipped. If this was not done, the example above would perform the

“>10” and “>1” statements when X was 10 or greater!

Special Definition of Variables

• Chr() X = Chr(9)

Assigns a tab character to the variable X. This function converts a numeric value

to its corresponding ASCII character. In ASCII, the character code “9” represents

a tab. Any ASCII code can be assigned or output using this method.

• Asc() X = Asc(“A”)

Assigns the value “65” to the variable X by converting a text character to its

representative ASCII (decimal) code.

Manipulation of Data Files

• Open

The open command initiates a connection with a data file of some kind.

Generally, you specify the file name and location (the filespec), a numeric

identifier that you will refer to this connection by (the filehandle), and the method

of accessing the file (the access mode), which can generally be Read or Write,

although most languages support a special write mode called Append, and some

support Random, which allows simultaneous reading and writing of specially

formatted files. The command returns a value indicating success or failure, which

can be evaluated prior to continuing file operations.

• Read / Write

Commands to read from or write to the file that was opened.

Var = read(filehandle) Reads a line from the defined file handle

write(filehandle,Var) Writes the specified variable to the open file handle

Note that many languages do not automatically append a line-terminator

character sequence when writing data files. If you want a line-delimited file, your

must make sure the data you write includes the LineFeed and Carriage Return

character sequences (or those appropriate for your file system).

• Close

Terminates the connection with the file, flushing all input or output buffers. This

insures that any data written is actually on the disk.

close(filehandle) Closes the file associated with filehandle

Special Variables & “Built-Ins”

Many programs have built-in “constants” that are defined each time the program runs.

The term constant may not actually be accurate, as the value of these “constants” may

change based on external events. For example, one “constant” might be time. The

program considers it a constant because it is not allowed to modify its value, even though

the value changes every second! Other examples of such “constants” might be date,

hostname, process, or version.

Some languages do not utilize constants at all, and others have dozens! Refer to your

programming language manual to see what is provided.

KiXtart-Specific Statements & Functions

Using Variables

KiXtart defaults to a variant type of variable.

Variables are defined and referenced using a “$” to identify variable names. Variable

names are permitted in text strings, although this is generally discouraged.

Variables can be declared as local via a DIM statement, or global using the GLOBAL

statement. Multiple variables can be declared on a single line. Variables not explicitly

declared default to GLOBAL.

Dim $X, $Y, $Z

Dim $aThings[10] ; an array of 10 things (0-9)

Global $InFile

Variable names must begin with a “$”, and should be limited to letters and numbers. No

distinction is made between upper and lower case letters.

Variables can be strings, integers, or double-precision floating-point numbers. Strings can

contain up to 32,000 characters.

Expressions

+ Numeric Sum or String Concatenation

- Numeric subtraction

* Multiplication

/ Division

mod Divides two numbers and returns the remainder

& Performs a bitwise AND of two numbers

| Performs a bitwise OR of two numbers

< Less-than

> Greater-than

= Equal

<> Not equal

<= Less-than or Equal

>= Greater-than or Equal

= = Case sensitive string comparison

Not Logical NOT operator - Negates the test or value

And Logical AND operator

Or Logical OR operator

Input & Output

There are two commands that perform user input, and one command for output.

Additionally, there is a function to display a dialog box and obtain a response based on

the button that the user selects.

Gets Gets $Input Accepts a string and stores it in the specified variable.

Get Get $Char Accepts one character, stores it in the specified variable

CLS CLS Clears the screen

? ? “message” “?” causes output to move to a new line. Any text in

quotes is output to the console. Variables inside a

quoted string, or references without an assignment are

displayed.

MessageBox A function to display a message box. Displays a title,

message text, and various configurations of buttons.

Here is an example of the commands shown above:

Cls

“Welcome!” ?

“Please enter your name: “

Gets $Name

? “Hello “

$Name

?

; “36” is the messagebox code for Yes/No and a “?” icon

$M = MessageBox(“Title”, “Message”, 36)

Conditionals

This is the general syntax of the if and iif statements. The Else and FalseStatementBlock

parts of the If statement are optional.

If test

 TrueStatementBlock. . .

Else

 FalseStatementBlock. . .

EndIf

$X = IIf(test, TrueValue, FalseValue)

Test should be a comparison, usually between a variable and a constant, or two variables.

$X = 5

If $X = 3

 “X is 3” ?

Else

 “X is NOT 3!” ?

EndIf

Iterative Loops

KiXtart supports For / Next and For Each / Next forms of iterative loops.

$X = 5

For $I = 1 to 10 Step 2

 "X=" $X " I=" $I ?

Next

$Array = 1,4,6,2,3

For Each $Element in $Array

 "Element="

 $Element

 ?

Next

Conditional Loops

KiXtart provides both Do / Until and While / Loop statements. The do loop will always

have its statements executed at least once, as the conditional test occurs at the end of the

loop. The while loop performs its test at the beginning, which can prevent the loop

statements from executing at all!

Do

 $X = Rnd(9) ; get a random # between 0 and 9

 'X=' ; print it

 $X

 ?

Until $X = 5 ; try again?

; This example starts with a random number. If, by chance

; that number is zero on the first try, the loop will

; not be executed, and processing will continue after

; the LOOP statement.

$X = Rnd(9) ; get a random # between 0 and 9

While $X <> 0

 'X=' ; print it

 $X

 ?

 $X = Rnd(9) ; get another random # between 0 and 9

Loop

